

9. EXTREME TEMPERATURE

9.1 HAZARD PROFILE

9.1.1 Hazard Description

Extreme temperature includes both heat and cold events, which can adversely affect human health and the economy, as well as cause primary and secondary effects on infrastructure (such as burst pipes and power failure). What constitutes extreme cold or extreme heat can vary across different areas of the country, based on the typical climate and seasonal patterns.

Extreme Cold

Extreme cold events occur when temperatures drop well below normal. Near-freezing temperatures may be considered extreme cold in regions unaccustomed to winter weather, whereas, in regions that are subjected to temperatures below freezing on a regular basis, extreme cold might refer to temperatures below 0 °F (NWS n.d.). For this HMP, extreme cold is define as ambient air temperature around or below 0 °F.

The following health hazards are related to extreme cold temperatures (NWS 2022):

- Frostbite is damage to body tissue caused by extreme cold. A wind chill of -20 °F will cause frostbite in just 30 minutes. Frostbite can cause a loss of feeling and a white or pale appearance in extremities.
- Hypothermia is a condition brought on when the body temperature drops to less than 95°F, and it can be deadly. Warning signs of hypothermia include uncontrollable shivering, memory loss, disorientation, incoherence, slurred speech, drowsiness, and apparent exhaustion.

Extreme Heat

Extreme heat is defined as temperatures that hover 10 °F or more above the average high temperature for a region and that last for several weeks (CDC 2024). A heat wave is a period of abnormally and uncomfortably hot and humid weather. A heat wave will typically last two or more days (NOAA n.d.).

The following health hazards are related to extreme high temperatures (CDC 2022):

- Heat exhaustion is the body's response to an excessive loss of water and salt, usually through excessive sweating. Symptoms can include headache, cramping, dizziness, and weakness.
- Heat stroke occurs when the body can no longer control its temperature: the body's temperature rises
 rapidly, the sweating mechanism fails, and the body is unable to cool down. When heat stroke occurs, the
 body temperature can rise to 106 °F or higher within 10 to 15 minutes. Heat stroke can cause permanent
 disability or death if the person does not receive emergency treatment.

Urban development exacerbates risk during an extreme heat event. As urban areas develop, buildings, roads, and other infrastructure replace open land and vegetation. Surfaces that were once permeable and moist become impermeable and dry. These changes cause urban areas to become warmer than the surrounding areas. This forms an island of higher temperatures known as an urban heat island. The annual mean air temperature of a city with more than a million people can be between 1.8 °F and 5.4 °F warmer than its surrounding areas. In the evening, the difference in air temperatures can be as high as 22 °F (EPA 2024).

As shown in Figure **9-1**, surface temperatures vary more than atmospheric air temperatures during the day, but they are generally similar at night. On a hot, sunny day, the sun can heat dry, urban surfaces to temperatures 50 °F to 90 °F hotter than the air. The dips and spikes in surface temperatures over a pond area show how water maintains a nearly constant temperature day and night because it does not absorb the sun's energy the same way as buildings and paved surfaces. Parks, open land, and bodies of water can create cooler areas within a city. Temperatures are typically lower at suburban-rural borders than in downtown areas.

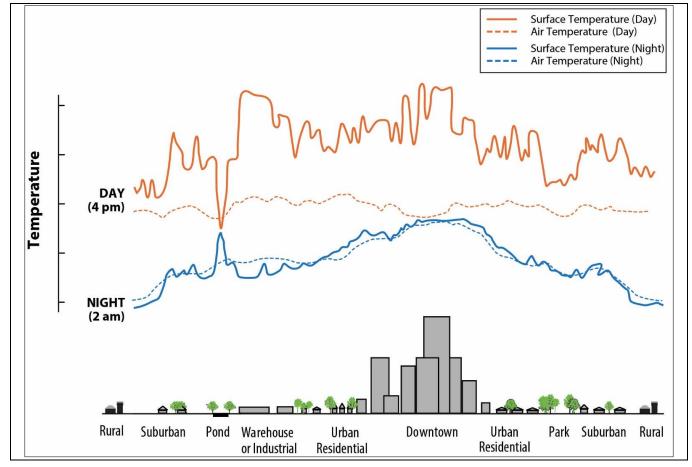


Figure 9-1. Urban Heat Island Effect Diagram

Source: US EPA 2023

Heat islands can affect communities by increasing peak energy demand during the summer, air conditioning costs, air pollution and greenhouse gas emissions, heat-related illness and death, and water quality degradation (EPA 2024).

9.1.2 Location

Climate Zones

The State of New Jersey defines five climate zones across the state—North, Central, Pine Barrens, Southwest, and Coastal—as shown on Figure **9-2**. Elevations, latitude, distance from the Atlantic Ocean, and landscape (e.g., urban, sandy soil) produce distinct variations in the daily weather between each of the zones (Rutgers University 2019). Most of Cape May County is in the Coastal Climate Zone, with a small portion in the Pine Barrens Zone.

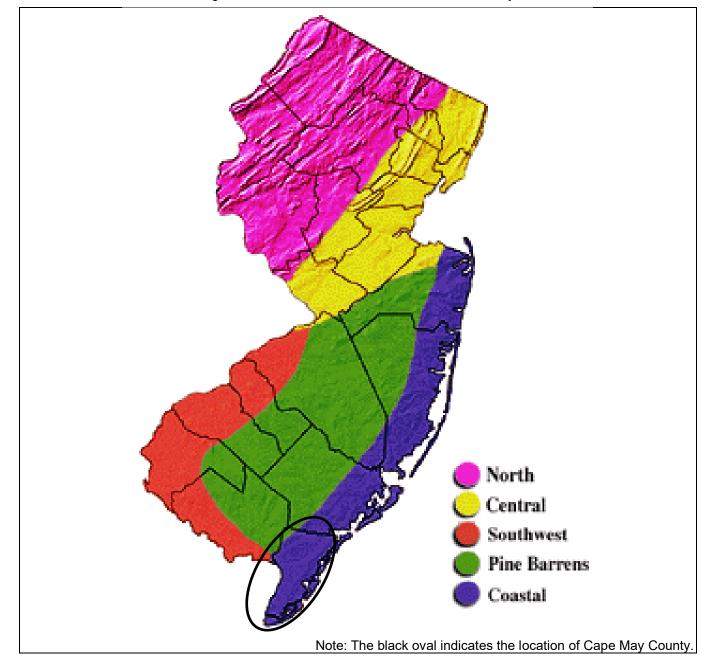


Figure 9-2. Climate Zones of the State of New Jersey

Source: Rutgers University 2019

In the Coastal climate zone, the climate is influenced by both continental and oceanic factors, leading to warmer temperatures in autumn and early winter and cooler temperatures in spring due to ocean breezes. The Atlantic Ocean's high heat capacity moderates seasonal temperature fluctuations. Sea breezes, common in spring and summer, can penetrate inland up to 40 miles. Coastal storms, including nor'easters, are frequent from October to April, bringing strong winds and heavy rains, while tropical storms and hurricanes also pose significant threats, especially during high tides (Rutgers University 2019).

The Pine Barrens climate zone is dominated by scrub pine and oak forests. The region's sandy, porous, and infertile soils significantly impact its climate, causing rapid radiation of solar heat on clear nights and resulting in notably low

minimum temperatures. The porous soil allows precipitation to quickly infiltrate, leaving surfaces dry and creating a wider range between daily maximum and minimum temperatures, making the area susceptible to forest fires (Rutgers University 2019).

Heat Island Effect Areas

NJDEP used satellite imagery from the U.S. Geological Survey (USGS) to develop a web application visualizing land surface temperature values in New Jersey during the summer of 2022 at a resolution of approximately 1,000 feet (NJDEP 2023). Figure **9-3** shows the variation in land surface temperature across Cape May County in the summer of 2022. The highest temperatures were on the barrier islands, along the Garden State Parkway corridor, near the county airport, and in the communities of Woodbine, Villas, North Cape May, and Rio Grande.

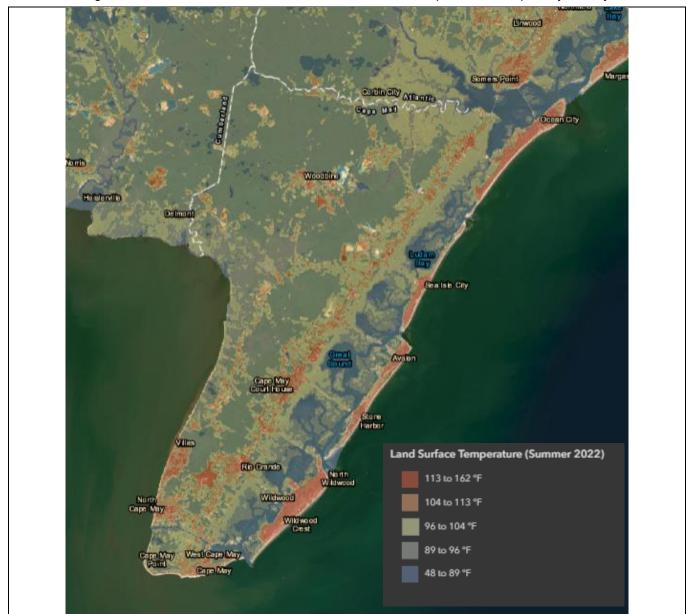


Figure 9-3. Urban Heat Island Effect and Land Surface Temperature in Cape May County

Source: NJDEP 2023

9.1.3 Extent

Extreme Cold

For extreme cold temperatures, NOAA uses the wind chill index, which indicates how cold the air feels on human skin when factoring in wind speed, as shown in Figure 9-4. Wind amplifies the cooling effect by blowing away the thin layer of warm air near a person's skin, making it feel colder than the actual air temperature. This index is helpful in determining the risk of frostbite and hypothermia. It is only applicable when temperatures are at or below 50 °F and wind speeds are above 3 mph.

Temperature (°F) Calm 40 35 30 25 20 15 -10 -15 -20 -45 5 36 31 25 19 13 7 1 -5 -11 -16 -22 -34 -63 34 27 21 15 9 3 -10 -16 -22 -28 -35 -41 -47 -53 -59 -66 -72 10 0 32 25 19 13 6 -7 -13 -19 -26 -32 -39 -45 -51 -58 -64 -77 -2 30 24 17 11 4 -9 -22 -29 -35 -48 -55 -81 29 25 23 16 9 3 -4 -11 -17 -24 -31 -37 -58 -51 -84 30 28 -5 -19 -26 -33 -39 -53 22 15 8 1 -12 -46 -60 -67 -73 -80 -87 35 28 7 0 -7 -14-21 -27 -34 -41 -48 -55 -62 -76 -82 -89 21 14 -69 40 27 -8 -22 -29 -36 -43 -50 -57 20 13 6 -1 -15 -64 -78 -84 -91 -9 -23 5 -2 -16 -30 -37 -44 -51 -58 -65 45 26 19 12 -93 50 26 19 12 4 -3 -10 -17 -24 -31 -38 -45 -52 -60 -67 -81 -95 -3 -11 -32 -39 55 25 18 11 4 -46 -61 -68 -97 60 25 17 10 3 -4 -11 -26 -33 -40 -48 -55 -69 -98 -62 Frostbite Times 30 minutes 10 minutes 5 minutes

Figure 9-4. Wind Chill Index

Source: NWS 2021

Extreme Heat

The heat index, shown in Figure **9-5**, measures the apparent temperature by combining air temperature and relative humidity, indicating how hot it feels. The values are designed for shady, light wind conditions. Table **9-1** outlines the effects of prolonged exposure to high heat index on the human body.

Extreme Temperature Alerts

Meteorologists can accurately forecast extreme heat and cold events and the severity of the associated conditions with several days of lead time. These forecasts provide an opportunity for public health and other officials to notify vulnerable populations, implement short-term emergency response actions, and focus on surveillance and relief efforts on those at greatest risk. Adhering to extreme temperature warnings and conducting appropriate mitigation and preparation measures can significantly reduce the risk of temperature-related deaths.

Extreme Danger

Temperature (°F) **NWS Heat Index** Relative Humidity (% Likelihood of Heat Disorders with Prolonged Exposure or Strenuous Activity

Figure 9-5. NWS Heat Index Chart - Shaded Areas

Source: NWS 2021

Caution

Table 9-1. Adverse Effects of Prolonged Exposure to Heat

Danger

Category	Heat Index	Effects on the Body
Caution	80 °F – 90 °F	Fatigue is possible with prolonged exposure and/or physical activity
Extreme Caution	90 °F – 103 °F	Heat stroke, heat cramps, or heat exhaustion is possible with prolonged exposure and/or physical activity
Danger	103 °F – 124 °F	Heat cramps or heat exhaustion is likely, and heat stroke is possible with prolonged exposure and/or physical activity
Extreme Danger	125 °F or higher	Heat stroke is highly likely
0		

Source: NWS n.d.

The NWS issues the following freeze/cold alerts (National Weather Service 2021):

Extreme Caution

- A Wind Chill Advisory is issued when seasonably cold wind chill values, but not extremely cold values
 are expected or occurring.
- A Wind Chill Watch is issued when dangerously cold wind chill values are possible.
- A Wind Chill Warning is issued when dangerously cold wind chill values are expected or occurring.
- A Frost Advisory indicates that areas of frost are expected or occurring and are posing a threat to sensitive vegetation.
- **A Freeze Watch** is issued when there is a potential for significant, widespread freezing temperatures within the following 24 to 36 hours.

- A Freeze Warning is typically issued when temperatures are forecasted to go below 32 °F for a long period
 of time.
- A Hard Freeze Warning is issued when temperatures are expected to drop below 28 °F, which typically kills most commercial crops and residential plants.

The NWS issues the following heat alerts (National Weather Service 2020):

- An Excessive Heat Outlook is issued when potential exists for an excessive heat event within the following three to seven days.
- A Heat Advisory is issued within 12 hours of the onset of extremely dangerous heat conditions. This
 advisory is typically issued when the maximum heat index temperature is expected to be 100 °F or higher
 for at least 2 days, and nighttime air temperatures will not drop below 75 °F.
- An Excessive Heat Watch is issued when conditions are favorable for an excessive heat event within the
 following 24 to 72 hours. This watch is typically issued when the risk of a heat wave has increased, but the
 timing and occurrence is still uncertain.
- An Excessive Heat Warning is issued within 12 hours of the onset of extremely dangerous heat conditions.
 This warning is typically issued when the maximum heat index temperature is expected to be 105 °F or higher for two consecutive days with night temperatures not dropping below 75 °F.

9.1.4 Previous Occurrences

FEMA Major Disaster and Emergency Declarations

Between 1954 and 2025, Cape May County was included in one major disaster (DR) or emergency (EM) declaration for an extreme temperature-related event—a snowstorm that resulted in extreme cold—as listed in Table **9-2** (FEMA 2025).

Table 9-2. FEMA Declarations for Extreme Temperature Events in Cape May County (2019 to 2025)

FEMA Declaration Number	Date of Event	Date of Declaration	Event Type
DR-4597-NJ	January 31 – February 2, 2021	April 28, 2021	Severe Winter Storm and Snowstorm

Source: FEMA 2025

USDA Declarations

The USDA can designate counties as disaster areas to make emergency loans to producers suffering losses in those counties and in contiguous counties. Between August 2019 to March 2025, Cape May County was included in one USDA disaster declaration related to extreme temperature, as listed in Table **9-3** (USDA 2025).

Previous Events

Known hazard events that impacted Genesee County between August 2019 to March 2025 are discussed in Table **9-4**. For events prior to 2019, refer to the 2019 Cape May County HMP.

Table 9-3. USDA Declarations for Extreme Temperature Events in Cape May County (2019 to 2025)

USDA Declaration Number		Date of Declaration	Event Type
S5348	July 1, 2022 - Present	December 20, 2022	Heat, Excessive Heat, High Temperature, Drought

Source: USDA 2025

Table 9-4. Extreme Temperature Events in Cape May County (2019 to 2025)

Event Date	Declaration or Proclamation Number	Location	Description
February 11, 2021	N/A	Countywide	Extreme cold conditions over the mid-Atlantic caused temperatures to drop throughout the state resulting in accumulation of snow ranging from 3 to 5 inches.
April 28, 2021	DR-4597-NJ	Statewide	Severe snowstorm led to extremely low temperatures for the County.
January 3-7, 2022	N/A	Countywide	Surface temperatures were sub-freezing which caused freezing rain to fall. Widespread light icing transpired across the eastern mid-Atlantic. The Cape May County Airport reported 0.01 inches of ice accretion. Ocean City reported 3.3 inches of snow accumulation.
January 29, 2022	N/A	Countywide	A strong coastal storm impacted the eastern mid-Atlantic and Northeast. Light snow brought an influx of extreme cold air to the region. These two systems meeting resulted in a blizzard across the region. The combination of strong winds and heavy snow led to whiteout conditions along the coastline.
July 1, 2022	S5348	Statewide	Excessive heat throughout the state contributed to drought impacts.
December 23, 2022	N/A	Countywide	Arctic cold front resulted in light precipitation and extreme cold. Temperatures dropped below freezing throughout the state and resulted in icy surfaces and roads.
December 24, 2022	N/A	Countywide	An arctic cold front moved through the region. Wind chills as low as -10 °F occurred throughout the region including the County.
January 15-19, 2024	N/A	Countywide	A winter system moved throughout the state causing snow accumulation and extreme cold. This resulted in a light glaze of ice and freeze near the southeast of I-95 and the NJ Turnpike.
February 17, 2024	N/A	Countywide	A winter storm brought light snowfall and extreme cold temperatures. Snowfall accumulation ranged from 1 to 3 inches across the state.

Source: NOAA NCEI 2025; FEMA 2025, USDA 2025

9.1.5 Probability of Future Occurrences

Probability Based on Past Events

Information on previous extreme temperature occurrences in the County was used to calculate the probability of future occurrence of such events, as summarized in Table **9-5**. Based on historical records and input from the Planning Partnership, the probability of occurrence for extreme temperature in the County is considered "occasional."

Table 9-5. Probability of Future Extreme Temperature Events in Cape May County

Hazard Type	Number of Occurrences Between 1950 and 2025	Percent Chance of Occurring in Any Given Year
Cold/Wind Chill	49	65.33%
Excessive Heat	23	30.66%
Extreme Cold/Wind Chill	4	5.33%
Heat	94	100.00%
Total	170	100.00%

Source: NOAA NCEI 2025; FEMA 2025, USDA 2025

Note: Due to limitations in data, not all extreme temperature events occurring between 1950 and 2015 are accounted for in the tally of occurrences. As a result, the number of hazard occurrences is calculated using the number of occurrences between 1950 and 2025.

100% probability indicates that it is statistically likely for an event to occur every year. It does not indicate that the occurrence of an event is a certainty in any given year.

Effect of Climate Change on Future Probability

By 2050, average temperatures in New Jersey are expected to increase by 4.1 °F to 5.7 °F. The state can expect an average annual temperature that is warmer than any to date and future temperatures could be as much as 10 °F warmer. By the middle of the 21st century, 70 percent of summers will be hotter than the warmest summer experienced to date. The increase in temperatures is expected to be felt more during winter (December, January, and February), resulting in less intense cold waves, fewer sub-freezing days, and less snow accumulation (NJDEP 2020).

9.1.6 Cascading Impacts on Other Hazards

Extreme temperature events can exacerbate the drought hazard, increase the potential risk of wildfires, and escalate severe weather and severe winter weather events for the County. Extreme heat may accelerate evaporation rates, which may dry out the air and soils making some terrestrial plants and soil more susceptible to catching fire. Extreme variation in temperatures could also create ideal atmospheric conditions for severe storms or worsen the outcome of severe winter weather during freezing and thawing periods. Extreme cold may result in an increase in flooding as a result of ice jams altering the flow and release of water.

9.2 VULNERABILITY AND IMPACT ASSESSMENT

All of Cape May County has been identified as exposed to extreme temperature events. Therefore, all assets in the County (population, structures, critical facilities, and lifelines), as described in the County Profile (Chapter 3), are exposed and potentially vulnerable.

9.2.1 Life, Health, and Safety

Overall Population

The entire population of Cape May County (95,263) is exposed to extreme temperature events. Extreme temperature events pose the risk of health impacts including injury and death. Populations most at risk to extreme cold and heat events include individuals with chronic medical conditions (e.g., heart disease, high blood pressure),; and the general public who may overexert doing work or exercise during extreme heat events or experience

hypothermia during extreme cold events (CDC 2005, CDC 2024). Adhering to extreme temperature warnings and conducting appropriate mitigation and preparation measures can significantly reduce the risk of temperature-related deaths.

Workers who are exposed to extreme heat or work in hot environments may be at risk of heat stress. Heat stress can result in heat stroke, heat exhaustion, heat cramps, or heat rashes. Heat can also increase the risk of injuries in workers as it may result in sweaty palms, fogged-up safety glasses, and dizziness. Burns may also occur as a result of accidental contact with hot surfaces or steam. Sunlight exposure is highest during the summer and between 10:00 a.m. and 4:00 p.m. Working outdoors during these times increases the chances of getting sunburned (CDC 2020, CDC 2018). Workers exposed to extreme cold temperatures may experience cold-related illnesses such as hypothermia, frostbite, trench foot, and chilblains (CDC 2024).

Socially Vulnerable Population

Without a quantitative assessment of potential impacts of extreme temperatures on socially vulnerable populations, the Planning Partners can best assess mitigation options through an understanding of the general numbers and locations of such populations across Cape May County. Table 9-6 summarizes highlights of this information. For planning purposes, it is reasonable to assume that the percentages and distribution of socially vulnerable populations affected by extreme temperatures will be similar to the countywide numbers.

Cape May County Municipality Highest in **Municipality Lowest in Category Total** Category Category **Number Percent Number** Percent **Number Percent** Avalon (B) Cape May Point (B) Wildwood (C) Lower (T) **Population Over 65** 26,529 27.8% 5.517 61.5% 118 15.5% Cape May Point (B), Cape May Point (B), Lower (T) Dennis (T) North Wildwood (C) North Wildwood (C) Population Under 5 4,117 4.3% 1,111 7.7% 0 0.0% Avalon (B), Cape Avalon (B), Cape May Point (B). May Point (B). North Wildwood (C). North Wildwood (C). Stone Harbor (B), Stone Harbor (B), West Wildwood (B), West Wildwood (B), Non-English-Wildwood (C) Middle (T) Wildwood Crest (B) Wildwood Crest (B) Speaking **Population** 1,408 1.5% 497 7.2% 0.0% Lower (T) Woodbine (B) Cape May Point (B) Cape May (C) **Population With** 14,049 14.7% 3,632 35.8% 43 6.0% Disability Woodbine (B) West Wildwood (B) Lower (T) Upper (T) **Population Below Poverty Level** 8,443 8.9% 2,369 30.4% 18 1.8%

Table 9-6. Distribution of Socially Vulnerable Populations by Municipality

Source: U.S. Census Bureau 2022 ACS Vulnerable Population Totals

Populations most at risk to extreme cold and heat events include older people, who are less able to withstand temperatures extremes due to their age, health conditions, and limited mobility to access shelters; infants and children up to 4 years of age; and low-income persons that cannot afford proper heating and cooling. Extreme heat can lead to heat-related illnesses such as heatstroke and dehydration, with vulnerable groups often having limited access to air conditioning and cooling centers, increasing their risk (NIHHIS n.d.). Many socially vulnerable

individuals work in outdoor or non-climate-controlled environments, such as construction and agriculture, making them more susceptible to heat-related health issues and reduced productivity.

Extreme cold can exacerbate chronic conditions, like cardiovascular and respiratory diseases, with vulnerable populations struggling to afford adequate heating, increasing their risk of hypothermia and frostbite (NIEHS 2022). Poorly insulated housing and homelessness significantly heighten the risks associated with extreme cold, as these groups often lack the resources to improve their living conditions. Additionally, extreme cold can disrupt transportation and access to essential services, such as healthcare and food supplies, disproportionately affecting those with limited mobility or financial resources (EPA 2024).

9.2.2 General Building Stock

All the building stock in the County is exposed to the extreme temperature hazard. Extreme heat generally does not impact buildings; however, elevated summer temperatures increase the energy demand for cooling. Losses can be associated with the overheating of heating, ventilation, and air conditioning (HVAC) systems.

Extreme cold temperature events can damage buildings through freezing/bursting pipes and freeze/thaw cycles, as well as increasing vulnerability to home fires. Additionally, manufactured homes (mobile homes) and older or poorly constructed buildings often lack adequate capabilities to withstand extreme temperatures. These deficiencies can include insufficient insulation and less efficient heating systems.

9.2.3 Community Lifelines and Other Critical Facilities

Direct impacts of extreme temperatures on structures are expected to be minimal. Extreme heat events can sometimes cause short periods of utility failures, commonly referred to as brown outs, created by increased usage from air conditioners, appliances, and similar equipment. Heavy snowfall and ice storms associated with extreme cold events can interrupt power as well. Backup power is recommended for critical facilities and infrastructure. Additionally, designating and developing emergency cooling or heating facilities can enhance the resilience and safety of communities.

Extreme temperatures can place significant stress on roads, bridges, and buildings. High temperatures cause materials to expand and contract, leading to cracks and other forms of damage. Other transportation systems are also affected by extreme heat, with rail tracks potentially buckling and asphalt softening, which can cause delays and safety concerns. Additionally, there is often an increased demand for energy during extreme temperatures, particularly for heating and cooling, which can lead to power outages and increased stress on energy grids.

9.2.4 Economy

Extreme temperature can threaten loss of business function and damage and loss of inventory. Business owners may be faced with increased financial burdens due to unexpected repairs (e.g., pipes bursting), higher than normal utility bills, or business interruption caused by power failure (e.g., loss of electricity and telecommunications) (NJOEM 2024). The agricultural industry is most at risk in terms of economic impact and damage caused by extreme temperature events. Extreme heat events can result in drought and dry conditions and directly affect livestock and crop production. Extreme heat and cold events can damage crops.

9.2.5 Natural Resources

During periods of extreme heat, air quality in Cape May County deteriorates significantly as high temperatures accelerate ozone production (NJOEM 2024). A combination of high temperatures and little rainfall creates ideal conditions for forest fires, which further degrade air quality by producing fine particulate matter from smoke.

Water resources are also heavily impacted by extreme heat. Prolonged high temperatures lengthen the growing season, increasing the demand for irrigation and affecting groundwater volumes. Drought conditions, often associated with extreme heat, can strain both surface and groundwater supplies, especially in areas with limited reservoirs. Freshwater and coastal wetlands face challenges as well. Increased drought frequency and intensity reduce the availability of freshwater vernal pools, which are crucial habitats for many sensitive wildlife species. Rising temperatures also create favorable conditions for invasive species like the clinging jellyfish (NJDEP 2020). Moreover, runoff from hot surfaces elevates the temperature of waterways, further stressing aquatic ecosystems.

Forests and vegetated lands are at heightened risk during extreme heat events. The dry conditions and high temperatures increase the likelihood and duration of wildfires (NJDEP 2020). Additionally, the warmer climate accelerates the maturation of insect pests, allowing them to invade new vegetated areas that previously did not experience such pressures

Prolonged cold spells can freeze wetland soils, reducing water seepage and causing snowmelt runoff to bypass wetlands. This makes water unavailable during the crucial spring and summer months. Heavy snow and ice accumulation during extreme cold weather can damage trees and crops by breaking vegetation and tree limbs. Prolonged periods of extreme cold can also harm vegetation and crops, negatively impacting the agricultural industry in the region (NJOEM 2024).

9.2.6 Historic and Cultural Resources

Historic buildings may be susceptible to damage from extreme temperature conditions. Proper strategies help safeguard buildings and their contents. Sudden and dramatic fluctuations in heating or cooling should be minimized. Slower heating and cooling give building materials and stored contents time to acclimate to new temperatures in the building and corresponding new humidity levels (CCAHA 2019).

Extreme heat can increase the risk of ignition of fires and their propagation. Fire causes material loss and deformation of cultural heritage assets and may also increase the probability of cracking or splitting in built structures. Under extreme heat, stones can face both macro-degradation (e.g., cracking of stones, soot accumulation, color change in stone containing iron) and micro-degradation (e.g., mineralogical and textural changes), leading to potential structural instability. The long-term impacts include weakened stones and increased susceptibility to processes such as salt weathering and temperature cycling (Sesana, et al. 2021)

Historical buildings and homes, which house many cultural artifacts, may not be built to withstand extreme temperature fluctuations, making them more vulnerable to damage. Climate change exacerbates decay rates and introduces new forms of deterioration. Changes in temperature can affect the structure and composition of building materials, accelerating physical, chemical, and biological degradation processes (Sesana, et al. 2021).

9.3 FUTURE CHANGES THAT MAY AFFECT RISK

9.3.1 Potential or Planned Development

The ability of new development to withstand extreme temperatures can be enhanced through land use practices and consistent enforcement of codes and regulations for new construction. New development will change the landscape as buildings, roads, and other infrastructure replace open land and vegetation. Transformation of pervious surfaces to impervious surfaces causes an island of higher temperatures. Specific areas of recent and new development are indicated in the jurisdictional annexes in Volume II of this plan.

9.3.2 Projected Changes in Population

Population change is not expected to have a measurable effect on the County's overall vulnerability to extreme temperatures. Any drastic increases in less densely populated areas of the County may require utility system upgrades (e.g., water, electricity) to keep up with demand during extreme temperature events.

Any increase in the socially vulnerable population, including low-income households, elderly residents, and individuals with pre-existing health conditions, can exacerbate the impacts of extreme heat and cold events (EPA 2024). These populations are often less able to afford adequate heating and cooling, making them more susceptible to health risks such as heatstroke, hypothermia, and respiratory issues. Socially vulnerable groups may also live in poorly insulated or antiquated housing, which can further increase their risk during extreme temperature events.

9.3.3 Climate Change

Climate change has the potential to alter the prevalence and severity of extreme temperature events. Most studies project that the State of New Jersey will see an increase in average annual temperatures and precipitation. With increased temperatures, people could face increased health impacts. Additionally, as temperatures rise, more buildings, facilities, and infrastructure systems may exceed their ability to cope with the heat. Thus, building efficiency and upgrading heating and cooling technology/HVAC will become an increasingly important issue for businesses and homeowners over the coming years.

